Published Research on Photobiomodulation for COVID-19
Akerström, S., Gunalan, V., Keng, C. T., Tan, Y.-J., & Mirazimi, A. (2009). Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology, 395(1), 1–9. https://doi.org/10.1016/j.virol.2009.09.007
Akerström, S., Mousavi-Jazi, M., Klingström, J., Leijon, M., Lundkvist, A., & Mirazimi, A. (2005). Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. Journal of Virology, 79(3), 1966–1969. https://doi.org/10.1128/JVI.79.3.1966-1969.2005
Camacho, A. D. (2020). Author’s Response to Ferreira: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? An Update [Review of Author’s Response to Ferreira: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? An Update]. Photobiomodulation, Photomedicine, and Laser Surgery, 38(6), 328–331. https://doi.org/10.1089/photob.2020.4899
Chow, R. T., & Armati, P. J. (2016). Photobiomodulation: Implications for Anesthesia and Pain Relief. Photomedicine and Laser Surgery, 34(12), 599–609. https://doi.org/10.1089/pho.2015.4048
Dal Moro, F., Vendramin, I., & Livi, U. (2020). The war against the SARS-CoV2 infection: Is it better to fight or mitigate it? Medical Hypotheses, 143, 110129. https://doi.org/10.1016/j.mehy.2020.110129
de Brito Sousa, K., Rodrigues, M. F. S. D., de Souza Santos, D., Mesquita-Ferrari, R. A., Nunes, F. D., de Fátima Teixeira da Silva, D., Bussadori, S. K., & Fernandes, K. P. S. (2020). Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers. Lasers in Medical Science, 35(2), 337–343. https://doi.org/10.1007/s10103-019-02817-1
Domínguez, A., Velásquez, S. A., & David, M. A. (2020). Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? Photobiomodulation, Photomedicine, and Laser Surgery, 38(5), 258–259. https://doi.org/10.1089/photob.2020.4870
Enwemeka, C. S., Bumah, V. V., & Masson-Meyers, D. S. (2020). Light as a potential treatment for pandemic coronavirus infections: A perspective. Journal of Photochemistry and Photobiology. B, Biology, 207, 111891. https://doi.org/10.1016/j.jphotobiol.2020.111891
Fekrazad, R. (2020a). Photobiomodulation and Antiviral Photodynamic Therapy as a Possible Novel Approach in COVID-19 Management. Photobiomodulation, Photomedicine, and Laser Surgery, 38(5), 255–257. https://doi.org/10.1089/photob.2020.4868
Ferreira, M. V. L. (2020). Response to: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? Photobiomodulation, Photomedicine, and Laser Surgery, 38(6), 326–327. https://doi.org/10.1089/photob.2020.4895
Fernandes, A. B., de Lima, C. J., Villaverde, A. G. J. B., Pereira, P. C., Carvalho, H. C., & Zângaro, R. A. (2020). Photobiomodulation: Shining Light on COVID-19. Photobiomodulation, Photomedicine, and Laser Surgery, 38(7), 395–397. https://doi.org/10.1089/photob.2020.4882
Fernandes, K. P. S., Souza, N. H. C., Mesquita-Ferrari, R. A., Silva, D. de F. T. da, Rocha, L. A., Alves, A. N., Sousa, K. de B., Bussadori, S. K., Hamblin, M. R., & Nunes, F. D. (2015). Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers. Journal of Photochemistry and Photobiology. B, Biology, 153, 344–351. https://doi.org/10.1016/j.jphotobiol.2015.10.015
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/biophy.2017.3.337
Hanna, R., Dalvi, S., Sălăgean, T., Pop, I. D., Bordea, I. R., & Benedicenti, S. (2021). Understanding COVID-19 Pandemic: Molecular Mechanisms and Potential Therapeutic Strategies. An Evidence-Based Review. Journal of Inflammation Research, 14, 13–56. https://doi.org/10.2147/JIR.S282213
Harrington, Phil, D. C., & Cmlso, F. (n.d.). Since nitric oxide is an established mediator in photobiomodulation mechanisms, and since nitric oxide is also proven to have antiviral effects, photobiomodulation is a potential viable treatment option for coronavirus patients. http://drphilharrington.com/dr-phil-blog/
Ibe, O., Morency, E., Sosa, P., & Burkow-Heikkinen, L. (2015). The role of near-infrared light-emitting diodes in aging adults related to inflammation. Healthy Aging Research, 4, 1–12. https://www.emmind.net/openpapers_repos/Applied_Fields-Experimental/Light_Near-light_Effects/Light_Red_+_NIR/2015_The_role_of_near-infrared_light-emitting_diodes_in_aging_adults_related_to_inflammation.pdf
Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: the interplay between inflammation and coagulation. The Lancet. Respiratory Medicine, 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2
Liebert, A., Bicknell, B., Markman, W., & Kiat, H. (2020). A Potential Role for Photobiomodulation Therapy in Disease Treatment and Prevention in the Era of COVID-19. Aging and Disease, 0. http://www.aginganddisease.org/EN/10.14336/AD.2020.0901
T. C. Liu, C.-C. Zeng, J.-L. Jiao, S.-H. Liu, The mechanism of low-intensity laser irradiation effects on virus (2003; https://ui.adsabs.harvard.edu/abs/2003SPIE.5254..150L), vol. 5254.
Lowenstein, C. J., & Padalko, E. (2004). iNOS (NOS2) at a glance. Journal of Cell Science, 117(Pt 14), 2865–2867. https://doi.org/10.1242/jcs.01166
Mehta, D. R., Ashkar, A. A., & Mossman, K. L. (2012). The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PloS One, 7(2), e31688. https://doi.org/10.1371/journal.pone.0031688
Mitchell, U. H., & Mack, G. L. (2013). Low-level laser treatment with near-infrared light increases venous nitric oxide levels acutely: a single-blind, randomized clinical trial of efficacy. American Journal of Physical Medicine & Rehabilitation / Association of Academic Physiatrists, 92(2), 151–156. https://doi.org/10.1097/PHM.0b013e318269d70a
Mokmeli, S., & Vetrici, M. (2020). Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19. Canadian Journal of Respiratory Therapy : CJRT = Revue Canadienne de La Therapie Respiratoire : RCTR, 56, 25–31. https://doi.org/10.29390/cjrt-2020-015
N. B. C. Chicago, Company says red light treatment could be used to fight Coronavirus. NBC Chicago (2020), (available at https://www.nbcchicago.com/news/coronavirus/company-says-red-light-treatment-could-be-used-to-fight-coronavirus/2266338/).
Nejatifard, M., Asefi, S., Jamali, R., Hamblin, M. R., & Fekrazad, R. (2020). Probable Positive Effects of the Photobiomodulation as an Adjunctive Treatment in COVID-19: A Systematic Review. Cytokine, 155312. https://doi.org/10.1016/j.cyto.2020.155312
Ondine Biomedical Inc. (2020, May 21). Ondine Biomedical Accelerates COVID-19 Program. https://www.globenewswire.com/news-release/2020/05/21/2037096/0/en/Ondine-Biomedical-Accelerates-COVID-19-Program.html
Ozdemir, B., & Yazici, A. (2020). Could the decrease in the endothelial nitric oxide (NO) production and NO bioavailability be the crucial cause of COVID-19 related deaths? Medical Hypotheses, 144, 109970. https://doi.org/10.1016/j.mehy.2020.109970
Rabelink, A. J. (1998). Nobel prize in Medicine and Physiology 1998 for the discovery of the role of nitric oxide as a signalling molecule. https://europepmc.org/article/med/10065255
Sabino, C. P., Ball, A. R., Baptista, M. S., Dai, T., Hamblin, M. R., Ribeiro, M. S., Santos, A. L., Sellera, F. P., Tegos, G. P., & Wainwright, M. (2020a). Light-based technologies for management of COVID-19 pandemic crisis. Journal of Photochemistry and Photobiology. B, Biology, 111999. https://doi.org/10.1016/j.jphotobiol.2020.111999
Saura, M., Zaragoza, C., McMillan, A., Quick, R. A., Hohenadl, C., Lowenstein, J. M., & Lowenstein, C. J. (1999). An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity, 10(1), 21–28. https://doi.org/10.1016/s1074-7613(00)80003-5
Sigman, S. A., Mokmeli, S., Monici, M., & Vetrici, M. A. (2020). A 57-Year-Old African American Man with Severe COVID-19 Pneumonia Who Responded to Supportive Photobiomodulation Therapy (PBMT): First Use of PBMT in COVID-19. The American Journal of Case Reports, 21, e926779. https://doi.org/10.12659/AJCR.926779
Sigman, S. A., Mokmeli, S., & Vetrici, M. A. (2020). Adjunct low level laser therapy (LLLT) in a morbidly obese patient with severe COVID-19 pneumonia: A case report. Canadian Journal of Respiratory Therapy : CJRT = Revue Canadienne de La Therapie Respiratoire : RCTR, 56, 52–56. https://doi.org/10.29390/cjrt-2020-022
Soheilifar, S., Fathi, H., & Naghdi, N. (2020). Photobiomodulation therapy as a high potential treatment modality for COVID-19. Lasers in Medical Science. https://doi.org/10.1007/s10103-020-03206-9
Szabó, C. (2000). Pathophysiological Roles of Nitric Oxide in Inflammation. In Nitric Oxide (pp. 841–872). https://doi.org/10.1016/b978-012370420-7/50053-8
Wink, D. A., Hines, H. B., Cheng, R. Y. S., Switzer, C. H., Flores-Santana, W., Vitek, M. P., Ridnour, L. A., & Colton, C. A. (2011). Nitric oxide and redox mechanisms in the immune response. Journal of Leukocyte Biology, 89(6), 873–891. https://doi.org/10.1189/jlb.1010550
Zeng, F., Huang, Y., Guo, Y., Yin, M., Chen, X., Xiao, L., & Deng, G. (2020a). Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 96, 467–474. https://doi.org/10.1016/j.ijid.2020.05.055
Zeng, F., Huang, Y., Guo, Y., Yin, M., Chen, X., Xiao, L., & Deng, G. (2020b). Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 96, 467–474. https://doi.org/10.1016/j.ijid.2020.05.055